Progress in Controlling COVID-19
by
Columbia University Professor Emeritus, Dr. David Figurski
presented by
Donna O’Donnell Figurski
(Disclaimer: The World Health Organization <WHO> has officially named the new coronavirus as SARS-CoV-2 and the disease it causes as COVID-19. Because the majority of people, including much of the press, commonly refer to the virus as “COVID-19,” to avoid confusion I use COVID-19 as the name of the virus in these posts.)
COVID-19

David H. Figurski, Ph.D & Survivor of Brain Injury
I want to tell you about an amazing podcast, TWiV (This Week in Virology), created and hosted by Dr. Vincent Racaniello, a colleague of mine at Columbia University.
Vincent’s a virologist who has done cutting edge research on the molecular biology of influenza virus, poliovirus, and rhinoviruses (which cause the common cold). His podcasts feature several PhDs in microbiology (virologists, an immunologist, a parasitologist, and a science reporter who earned his PhD with Vincent) discussing the latest research and advances in viruses.
Vincent has been self-quarantining at home. Consequently, since March 13th, he has made more than 30 podcasts, nearly all concerning COVID-19, potential therapies and vaccines, and pandemics. His guests have been infectious disease scientists doing research or physicians in the trenches learning about the clinical manifestations of the virus and how to treat their patients.

Dr. Vincent Racaniello – Columbia University Virologist
Vincent’s podcasts are made for non-scientists to understand, but they are 1-2 hours long. Probably none of you has the time to listen that long. Therefore, I’m trying to listen to them so I can point you to episodes and minutes you may want to hear.
Podcast #622, released June 2, featured Dr. Emmie de Wit of the Rocky Mountain Labs in Montana. She’s a virologist doing drug and vaccine research in monkeys. Because Rocky Mountain Labs is one of the few places in the country with a high-safety-level facility, Dr. de Wit has worked with several dangerous viruses: SARS-1, MERS, pandemic influenza strains, and Ebola. Now she’s working with SARS-2.
I’ve boiled down Episode #622 to four segments totaling ~16 minutes.
- 26:05-26:35 – The spike protein of the virus coat initiates infection of a cell by attaching to the ACE2 protein (angiotensin converting enzyme 2) on the cell’s surface. Here Emmie tells how it took only days to identify ACE2 and confirm viral binding. Rich Condit, a virologist, was astonished by the speed. ACE2-binding by spike is a potential drug target.
- 37:15-39:44 – The PCR test (polymerase chain reaction), simple enough to be done on a large scale, detects the 30,000-nucleotide (or base) RNA chromosome of the virus. But, PCR is so sensitive that it can detect degradation fragments of the RNA, even though the person is no longer contagious. The only way to tell for sure is to detect viable virus in cell culture. This is hard to do and is only done in virology research labs. As a result, a person is considered infected and contagious if the PCR test is positive.
- 43:35-54:05 Remdesivir, an antiviral drug, is a nucleotide-analog that blocks the copying of the RNA chromosome to make more virus. Emmie showed that giving remdesivir to monkeys early (at 12-hours post infection) was very effective. But, humans don’t show symptoms for days, and, because remdesivir must be administered intravenously, patients are only given remdesivir if they are hospitalized. This is very late, and still there is a modest effect. Rich Condit talks about the possibility of producing an oral form of the drug. Then remdesivir could be taken earlier – maybe even at home – and might be very effective in humans.
- 58:25-60:40 This segment concerns a vaccine. (I’ll write more on this topic later, but you should know that there are three types of promising technologies: the viral protein-based, the viral gene-based, and the virus vector-based, in which a harmless virus carries a gene from a disease-producing virus for a protein that’s needed to infect cells.)
Emmie tested a harmless chimpanzee adenovirus that was engineered to carry the COVID-19 spike gene. This adenovirus produces the coronavirus spike protein, needed for COVID-19 to infect cells. So, this harmless adenovirus should cause us to make antibodies that will block infection by COVID-19.
In Emmie’s experiment in monkeys, the vaccine worked so well that it allowed clinical trials to proceed in humans.
Stay Safe and Healthy!
Clip Art compliments of Bing.)
(Photos compliments of contributor.)
As I say after each post:
Please leave a comment by clicking the blue words “Leave a Comment” below this post.
Feel free to follow my blog. Click on “Follow” on the upper right sidebar.
If you like my blog, share it intact with your friends. It’s easy! Click the “Share” buttons below.
Comments on: "COVID-19 — It’s Everywhere . . . Progress in Controlling COVID-19" (3)
Lots of good stuff here and it’s an interesting post. Thanks for sharing!
LikeLike
Nina, thanks so much for reading and commenting.
Donna
LikeLike
You are very welcome, ninanorstrom.
LikeLike